How good is your helmet? Will it actually protect your brain in your next crash? These seem like easy questions, ones you probably think you can answer by reciting the lofty standards your helmet meets and the lofty price you might have paid for it. But the real answers, as you are about to see, are anything but easy.

There's a fundamental debate raging in the motorcycle helmet industry.

In a fiberglass-reinforced, expanded-polystyrene nut-shell, it's a debate about how strong and how stiff a helmet should be to provide the best possible protection.
Why the debate? Because if a helmet is too stiff it can be less able to prevent brain injury in the kinds of crashes you’re most likely to have. And if it’s too soft, it might not protect you in a violent, high-energy crash. What’s just right? Well, that’s why it’s called a debate. If you knew what your head was going to hit and how hard, you could choose the perfect helmet for that crash. But crashes are accidents. So you have to guess.

To understand how a helmet protects—or doesn’t protect—your brain, it helps to appreciate just how fragile that organ actually is. The consistency of the human brain is like warm Jello. It’s so gooey that when pathologists remove a brain from a cadaver, they have to use a kind of cheesecloth hammock to hold it together as it comes out of the skull.

Your brain basically floats inside your skull, within a bath of cervical-spinal fluid and a protective cocoon called the dura. But when your skull stops suddenly—as it does when it hits something hard—the brain keeps going, as Sir Isaac Newton predicted. Then it has its own collision with the inside of the skull. If that collision is too severe, the brain can sustain any number of injuries, from shearing of the brain tissue to bleeding in the brain, or between the brain and the dura, or between the dura and the skull. And after your brain is injured, even more damage can occur. When the brain is bashed or injured internally, bleeding and inflammation make it swell. When your brain swells inside the skull, there’s no place for that extra volume to go. So it presses harder against the inside of the skull and tries to squeeze through any opening, bulging out of your eye sockets and oozing down the base of the skull. As it squeezes, more damage is done to some very vital regions.

None of this is good. To prevent all that ugly stuff from happening, we wear helmets. Modern, full-face helmets, if we have enough brains to protect, that is. A motorcycle helmet has two major parts: the outer shell and the energy-absorbing inner liner. The inner lining is made of expanded polystyrene or EPS, the same stuff used in beer coolers and foam coffee cups. Outer shells come in two basic flavors: a resin/fiber composite, such as fiberglass, carbon fiber and Kevlar, or a molded thermoplastic such as ABS or polycarbonate, the same basic stuff used in face shields and F-16 canopies.

Helmet standards call for dropping helmets onto a stainless-steel anvil. But roads aren’t made of stainless steel. So we created our own asphalt anvil after stealing a section of Sheldon Street. An even scarier test (lower left) involved dropping lids on an upright steel edge.
If you're hit very violently on the jaw, as in a head-on impact, the force can be transmitted to the base of the skull, which can fracture and sever your spine. It's a common cause of death in helmeted riders—and a very good reason to wear a full-face helmet and insist on thick EPS padding—not resilient foam—in your chin bar.

When your brain collides with the inside of your skull, bony protrusions around your eyes, sinuses and other areas can cause severe damage to the brain itself. And if your head is twisted rapidly, the brain can lag behind, causing tearing and serious internal brain injury.

If your brain is injured, swelling and inflammation often occur. Because there's no extra room in your skull, your brain tries to squeeze down through the hole in the base of the skull. This injures the vital brain stem even further, often destroying the parts that control breathing and other basic body functions.

If you're hit very violently on the jaw, as in a head-on impact, the force can be transmitted to the base of the skull, which can fracture and sever your spine. It's a common cause of death in helmeted riders—and a very good reason to wear a full-face helmet and insist on thick EPS padding—not resilient foam—in your chin bar.

When your brain collides with the inside of your skull, bony protrusions around your eyes, sinuses and other areas can cause severe damage to the brain itself. And if your head is twisted rapidly, the brain can lag behind, causing tearing and serious internal brain injury.

If your brain is injured, swelling and inflammation often occur. Because there's no extra room in your skull, your brain tries to squeeze down through the hole in the base of the skull. This injures the vital brain stem even further, often destroying the parts that control breathing and other basic body functions.

Standardized Standards

To make buying a helmet in the U.S. as confusing as possible, there are at least four standards a street motorcycle helmet can meet. The price of entry is the DOT standard, called FMVSS 218, that every street helmet sold here is legally required to pass. There is the European standard, called ECE 22-05, accepted by more than 50 countries. There's the BSI 6658 Type A standard from Britain. And lastly the Snell M2000/M2005 standard, a voluntary, private standard used primarily in the U.S. So every helmet for street use here must meet the DOT standard. But here's where the standard gets interesting.

The DOT standard requires no more than 18 Gs to be transmitted to the head in a crash. The ECE 22-05 standard is more strict, requiring no more than 14 Gs. The BSI 6658 Type A standard is the strictest, requiring no more than 10 Gs. And the Snell M2000/M2005 standard requires no more than 8 Gs. So if you're looking for a helmet that will protect you from injury in a crash, you should look for a helmet that meets the Snell M2000/M2005 standard. But if you're looking for a helmet that will make you look cool, you should look for a helmet that meets the DOT standard. And if you're looking for a helmet that will make you rich, you should look for a helmet that meets the BSI 6658 Type A standard.
standard, and might or might not meet one of the others.

Just by looking at the published requirements for each standard, you would guess a DOT-only helmet would be the softest, with an ECE helmet, then a BSI helmet, then a Snell helmet. Because there are few human volunteers for high-impact helmet testing—and because they would be a little confused after a hard day of 200-G impacts—it’s done on a test rig.

The helmets are dropped, using gravity to accelerate the helmet to a given speed before it smash- es onto a test anvil bolted to the floor. By varying the drop height and the weight of the magnesium headform inside the helmet, the energy level of the test can be easily varied and precisely repeated. As the helmet/headform falls it is guided by either a steel track or a pair of steel cables. That guiding system adds friction to slow the fall slightly, so the test technician corrects for this by raising the initial drop height accordingly.

The headform has an accelerometer inside that precisely records the forces the headform receives, showing how many Gs the headform took as it stopped and fell long.

If you test a bunch of helmets under the same conditions, you can get a good idea of how well each one absorbs a particular hit. It’s important to understand that as in lap times, golf scores and marriages, a lower number is always better when we’re talking about your head receiving extreme G forces.

On The Highway To Snell

On the stiff, tough-guy side of this debate is the voluntary Snell M2000/M2005 standard, which dictates each helmet be able to withstand some tough, very high-energy impacts. The Snell Memorial Foundation is a private, not-for-profit organiza- tion dedicated to "research, education, testing and develop- ment of helmet safety standards." If you think moving quickly over the surface of the planet is fun and you enjoy using your brain, you should be grateful to the Snell Memorial Foundation. The SMF has created standards that have raised the bar in head protection in nearly every pursuit in which humans hit their heads: bicycles, horse racing, karting, motocross, skateboards, rollerblades, recreational skiing, ski racing, ATV riding, snowboarding, car racing and, of course, motocycling. But as helmet technology has improved and accident research has accumulated, many head-injury experts feel the Snell M2000 and M2005 standards are, to quote Dr. Harry Hurt of the Hurt Report fame, "a little bit excessive."

The killer—the hardest Snell test for a motorcycle helmet to meet—is a two-site test onto a hemispherical chunk of stainless steel about the size of an orange. The first hit is at an energy of 150 joules, which translates to dropping a 5-kilo weight about 10 feet—an extremely high-energy impact. The next hit, on the same spot, is set at 110 joules, or about an 8-foot drop. To pass, the helmet is not allowed to transmit more than 300 Gs to the headform in either hit.

Tough tests such as this have driven helmet development over the years. But do they have any practical application on the street, where a hit at 80 as the hardest single Snell impact may only hap- pen in 1 percent of actual acci- dents? And where an impact as severe as the two-drop hemi test happens just short of never? Dr. Jim Newman, an actual rocket scientist and highly respected head-injury expert—he was once a Snell Foundation director—puts it this way: "If you want to create a realistic helmet standard, you don't go bashing helmets onto hemi- spherical steel balls. And you certainly don't do it twice.

"Over the last 30 years," con- tinues Newman, "we've come to the realization that people falling off motorcycles hardly ever, ever hit their head in the same place twice. So we have helmets that are designed to withstand two hits on the same site. But in doing so, we have severely, severely compromised their ability to take one and absorb energy properly.

"The consequence is, when you have one hit at one site in an accident situation, two things happen. One, you don't fully uti- lize the energy-absorbing materi- al that's available. And two, you generate higher G loading on the head than you need to."

“What's happened to Snell over the years is that in order to make what's been served as a better hel- met, they kept raising the impact energy. What they should have been doing, in my view, is lowering the allowable G force.

"In my opinion, Snell should keep a 10-foot drop [in its test- ing]. But tell the manufacturers, OK. 300 Gs is not going to cut it anymore. Next year you're going to have to get down to 250. And the next year, 200. And the year after that, 185."

The Brand Leading

"The Snell sticker," continued Newman, "has become a mar- keting gimmick. By spending 60 cents [paid to the Snell foundation], a manufacturer puts that sticker in his helmet and he can increase the price by $30 or $40. Or even $60 or $100.

"Because there's this allure, this charisma, this image associ- ated with a Snell sticker that says, 'Hey, this is a better hel- met, and therefore must be worth a whole lot more money.' And in spite of the very special intentions of everybody at Snell, they did not have the field data that took 250, 230 Gs [in their accidents]. And they've got a dif- fuse injury—they're not gonna get rid of. The helmet has a good whack on it, but so what? If they'd had a softer helmet they'd have been better off."

How does the Snell Foundation respond to the criticism of head-injury scientists from all over the world that the Snell standards create helmets too stiff for optimum pro- tection in the great majority of accidents? "The whole business of testing helmets is based on the assump- tion that there is a threshold of injury," says Ed Becker, executive director of the Snell Foundation.
THE LIKELIHOOD OF DYING FROM A HEAD INJURY GOES UP DRAMATICALLY IF YOU HAVE OTHER INJURIES, IT ALSO GOES UP WITH AGE, WHICH MEANS THAT A NICE, EASY AIS 3 HEAD INJURY CAN BE THE BLOW THAT KILLS YOU IF YOU HAVE SOME OTHER MAJOR DAMAGE.

A patient’s AIS score is determined separately for each different section of the body. So you could have an AIS 4 injury to your leg, an AIS 3 to your chest and an AIS 5 injury to your head. And you’ll be one hurtin’ puppy.

Newman is quoted in the COST study on the impact levels likely to cause certain levels of injury. Back in the ’80s he stated that, as a rough guideline, a peak linear—”the kind we’re measuring here”—of 200 to 250 Gs generally corresponds to a head injury of AIS 4, or severe; that a 250 G to 300 G impact corresponds to AIS 5, or critical; and that anything over 300 Gs corresponds to AIS 6. That is, unsurvivable.

Newman isn’t the only scientist who thinks getting hit with much more than 200 Gs is a bad idea. In fact, researchers have pretty much agreed on that for 50 years.

The Wayne State Tolerance Curve is the result of a pretty gruesome series of experiments back in the ’50s and ’60s in which dog’s brains were blasted with bursts of compressed air, monkeys were bashed on the skull, and the heads of dead people were dropped to see just how hard they could be hit before big-time injury set in. This study’s results were backed up by the JARI Human Head Impact Tolerance Curve, published in ’80 by a Japanese group who did further unspeakable things to monkeys, among other medically necessary atrocities.

The two tolerance curves agree on how many Gs you can apply to a human head for how long before a concussion or other serious brain injury occurs. And the Wayne State Tolerance Curve was instrumental in creating the DOT helmet standard, with its relatively low G-force allowance.

According to both these curves, exposing a human head to a force over 200 Gs for more than 2 milliseconds is what medical experts refer to as “dead.” Heads are different, of course. Young, strong people can take more Gs than old, weak people. Some prizefighters can take huge hits again and again and not seem to suffer any ill effects other than a tendency to sell hamburger cooks on late-night TV. And the impacts a particular head has undergone in the past may make that head more susceptible to injury.

Is an impact over the theoretical 200 G/2 millisecond threshold going to kill you? Probably not. Is it going to hurt you? Depends on you, and how much other than your particular hit happens to be. But head injuries short of death are no joke. Five million Americans suffer from disabilities from what’s called Traumatic Brain Injury—getting hit too hard on the head. That’s disabilities, meaning they ain’t the same as they used to be. There’s another important factor that comes into play when discussing how hard a hit you should allow your brain to take: the other injuries you’ll probably get in a serious crash, and how the effects of your injuries add up.

The likelihood of dying from a head injury goes up dramatically if you have other major injuries as well. It also goes up with age. Which means that a nice, easy AIS 3 head injury, which might be perfectly survivable on its own, can be the injury that kills you if you already have other major injuries. Which, as it happens, you are very likely to have in a serious motorcycle crash.

The COST study was limited to people who had hit their helmets on the pavement in their accidents. Of these, 67 percent sustained some kind of head injury. Even more—13 percent—sustained leg injuries, and 57 percent had thorax injuries.

You can even calculate your odds using the Injury Severity Score, or ISS. Take the AIS scores for the worst three injuries you have. Square each of those scores—that is, multiply them by themselves. Add the three results and compare them with the ISS Scale of Doom below.

A score of 7 means you’re dead. Sorry. Very few people with an ISS of 7 see tomorrow either. If you’re between 15 and 44 years old, an ISS score of 40 means you have a 50-50 chance of making it. If you’re between 45 and 64 years old, ISS 29 is the 50-50 mark. And above 65 years old, the 50-50 level is an ISS of 20. For a 45- to 64-year-old guy such as myself, an ISS over 23 means I’ll probably die.

If I get two “serious,” AIS 3 injuries—the aforementioned AIS 3 head hit and AIS 3 chest thump—and a “severe” AIS 4 leg injury, my ISS score is 29.7. See, 3 times 3 is 9. Twice that is 18. 4 times 4 is 16. 18 and 16 is 34. Ooops. Gotta go.

Drop my AIS 3 head injury to an AIS 2 and my ISS score is 29. Now I’ve got a 50-50 shot.

Obviously, this means it’s very important to keep the level of head injury as low as possible. Because even if the head injury...
In a typical large motorcycle dealership you’re likely to find helmets that conform to all these standards. Most U.S.-market full-face helmets made in Asia—Arai, HJC, Icon, KBC, ScorpionExo, Shoei, and most Fulmer models—are Snell M2000 or M2005 certified. (The Snell standard did not change substantially from M2000 to M2005.) Most helmets from European companies—Vemar, Shark, Schuberth, etc.—conform to the ECE 22-05 standard. Suomy helmets sold under its own name conform to either the ECE or the BSI standard, but Suomy private-labels some helmets to brands such as Ducati that are built and certified to Snell. Some AGV models sold here are made to Snell standards, some to BSI. And a few Asian-made helmets are DOT-only. Among major manufacturers, Z1R (a subbrand of Parts Unlimited) and Fulmer Helmets sell DOT-only lids at the lower end of their pricing scales. You can also get ‘em at Pep Boys under the Raider brand name. The DOT standard has acquired something of a low-rent reputation for a number of reasons. First, it comes from the Gubmint, and the Gubmint, as we know, can’t do anything right. The DOT standard, like laws against, say, murder, also relies on the honor system; that is, there’s only a penalty involved if you break it and sell a non-complying helmet and get caught. Manufacturers are required to do their own testing and then certify that their helmets meet the standards. But it also gives helmet designers quite a bit of freedom to design a helmet the way they think it ought to be for optimum overall protection. The question is, how well are those designers doing their job with all that freedom?

The DOT standard, like the laws against, say, murder, relies on the honor system; that is, there’s only a penalty if you break the law by selling a non-complying helmet and get caught. Because no matter where you go, you always leave your own neighborhood and come back to it. And making it through traffic-filled intersections—the ones near your home—is the most dangerous thing you do on a street motorcycle. The next-biggest group of typical accidents happens at night, often on a weekend, at higher speeds. They are much more likely to involve alcohol, and often take place when a rider goes off the road alone. These two groups of accidents account for almost 75 percent of all home. Because no matter where you go, you always leave your own neighborhood and come back to it. And making it through traffic-filled intersections—the ones near your home—is the most dangerous thing you do on a street motorcycle. The next-biggest group of typical accidents happens at night, often on a weekend, at higher speeds. They are much more likely to involve alcohol, and often take place when a rider goes off the road alone. These two groups of accidents account for almost 75 percent of all...
serious crashes. So the accident we are most afraid of, and the one we tend to buy our helmets for—crashing at high speeds, out sport riding—is relatively rare. Even though many motorcycles were capable of running the quarter-mile in 11 seconds (or less) and topping 140 mph back in ’81, not one of the 900-odd accidents investigated in the Hurt study involved a speed over 100 mph. The “one in a thousand” speed seen in the Hurt Report was 86 mph, meaning only one of the accidents seen in the 900-crash study occurred at or above that speed. And the COST 327 study, done recently in the land of the autobahn, contained very few crashes over 120 kph, or 75 mph. The big lesson here is this: It’s a mistake to assume that going really fast causes a significant number of accidents just because a motorcycle can go really fast.

Another eye-opener: In spite of what one might assume, the speed at which an accident starts does not necessarily correlate to the impact the head—or helmet—will have to absorb in a crash. That is, according to the Hurt Report and the similar Thailand study, going faster when you fall off does not typically result in your helmet taking a harder hit. How can this be? Because the vast majority of head impacts occur when the rider falls off his bike and simply hits his head on the flat road surface. The biggest impact in a given crash will typically happen on that first contact, and the energy is proportional to the height from which the rider falls—not his forward speed at the time. A big highside may give a rider some extra altitude, but rarely higher than 8 feet. A high-speed crash may involve a lot of sliding along the ground, but this is not particularly challenging to a helmeted head because all modern full-face helmets do an excellent job of protecting you from abrasion.

In fact, the vast majority of crashed helmets examined in the Hurt Report showed that they had absorbed about the same impact you’d receive if you simply tipped over while standing, like a bowling pin, and hit your head on the pavement. Ninety-plus percent of the head impacts surveyed, in fact, were equal to or less than the force involved in a 7-foot drop. And 99 percent of the impacts were at or below the energy of a 10-foot drop. The impact you’d receive if you simply tipped over while standing, like a bowling pin, and hit your head on the pavement. Ninety-plus percent of the head impacts surveyed, in fact, were equal to or less than the force involved in a 7-foot drop. And 99 percent of the impacts were at or below the energy of a 10-foot drop. In analyzing the accident-involved helmets, the Hurt researchers also addressed whether helmets certified to different standards actually performed differently in real crashes, that is, did a Snell-certified helmet work better at protecting a person in the real world than a plain old DOT-certified or equivalent helmet? The answer was no. In real street conditions, the DOT or equivalent helmets worked just as well as the Snell-certified helmets. In the case of fatal accidents, there was one more important discovery in the Hurt Report: Those involved in truly awful, bone-crushing, aorta-popping crashes, did sustain potentially fatal head injuries even though they were wearing helmets. The problem was that they also had, on average, three other injuries that would have killed them if the head injury hadn’t.

In other words, a crash violent enough to overwhelm any decent helmet will usually destroy the rest of the body as well. Newman put this into perspective. “In most cases, bottoming [compressing a helmet’s EPS completely] is not going to occur except in really violent accidents. And in these kind of cases, one might legitimately wonder whether there is anything you could do.”

How many people were saved because their helmet was designed to a “higher” or “lower energy” standard than the DOT standard? As far as the Hurt researchers could ascertain, none. But the Hurt Report was done nearly 25 years ago. There have been a couple of significant

Fiberglass helmets such as the Schuberth S1 (top) and the Arai Tracker (center) showed substantial damage to their shells after the edge impact. The polycarbonate-shelled helmets, such as the Scorpion EXO-400, were largely unmarked. Neither result is essentially better: Either shell material can be used to make excellent helmets. Polycarbonate helmets generally transmit fewer Gs to the head in our testing than fiberglass-shell lids, even when certified to the same standards.
SPECIAL REPORT

accident studies done since. Both of which, by our reading, tend to back up the Hurt Report’s findings.

The COST 327 study investigated 253 motorcycle accidents in Finland, Germany and the United Kingdom, from ’95–’98. Of these, the investigators selected 20 well-documented crashes and replicated the impact from those crashes by doing drop tests on identical helmets in the lab until they got the same helmet damage. This allowed them to find out how hard the helmet in the accident had been hit, and to correlate the impact with the injuries actually suffered by the rider or passenger.

The COST 327 results showed that some very serious and potentially fatal head injuries can occur at impact levels that stiffer current helmet standards—such as Snell M2000 and M2005—allow helmets to exceed. And remember, these guys are investigating crashes in Europe, where Snell-rated helmets are a rarity because they can’t generally pass the softer ECE standard required there.

In other words, the latest relevant study, which used state-of-the-art methods and covered accidents in countries where there are plenty of 10-second, 160-mph superbikes running around, concluded that current standards—even the relatively soft ECE standards—are allowing riders’ heads to be routinely subjected to forces that can severely injure or kill them. The COST study estimated that better, more energy-absorbent helmets could reduce motorcycle fatalities up to 20 percent. If that estimate is legitimate and was applied in the U.S., it would mean saving about 700 American riders’ lives a year.

There’s no good reason to think things are different here in the States than in Germany, Britain and Finland, all modern, well-developed, super-bike-rich countries. Heads are heads, asphalt is asphalt, and falling bodies operate under the same laws of physics there as they do here in America.

If you ask most head-impact scientists or the representatives of the European helmet manufacturers how they like the Snell M2000/M2005 standard, they will generally tell you it’s unrealistic, based more on supposition than on science, and forces manufacturers to make helmets that are stiffer than they should be.

If you ask the representatives of many of the top Snell-approved helmet companies, they’ll say the Snell standard is a wonderful thing, and they’ll imply helmets certified to lower-energy standards—that would be any other standard in the world—are suspicious objects, like smoked clams from the 99 Cent Only store. And not as good at protecting you in an extremely high-energy mega-crash as a Snell-approved helmet is.

What the Snell advocates won’t tell you is that when these same makers sell their helmets in Europe, Japan and the U.K., they are not the same helmets they sell here, and they’re not Snell rated. They are built softer, tailored to conform to exactly the same ECE or BSI standards as the European makers.

If you get these two groups of folks in a room together and ask these questions, we’d suggest wearing a helmet yourself.

Can Less Be More?

In the last 10 to 15 years a number of Asian-made helmet brands such as HJC, Icon, KBC and

<table>
<thead>
<tr>
<th>STANDARD</th>
<th>SNELL M2000/M2005</th>
<th>DOT FMVSS 218</th>
<th>BSI 6658-85 TYPE A</th>
<th>ECE EN 22-05</th>
<th>COST 327 (PROPOSED ECE)</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLAT ANVIL</td>
<td>Two drops (all sizes)</td>
<td>Two drops (all sizes)</td>
<td>Two drops (all sizes)</td>
<td>One drop</td>
<td>One drop</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Medium: 132.2 J</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Large: 157.5 J</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Medium: 100 J</td>
</tr>
<tr>
<td>HEMI ANVIL</td>
<td>Two drops (all sizes)</td>
<td>Two drops (all sizes)</td>
<td>Two drops (all sizes)</td>
<td>One drop</td>
<td>One drop</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Medium: 132.2 J</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Large: 157.5 J</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Medium: 100 J</td>
</tr>
<tr>
<td>CURB ANVIL</td>
<td>One drop</td>
<td>One drop</td>
<td>One drop</td>
<td>One drop</td>
<td>One drop</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1st: 150 J</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Medium: 132.2 J</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Large: 157.5 J</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Medium: 100 J</td>
</tr>
<tr>
<td>EDGE ANVIL</td>
<td>One drop</td>
<td>One drop</td>
<td>One drop</td>
<td>One drop</td>
<td>One drop</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1st: 150 J</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Medium: 132.2 J</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Large: 157.5 J</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Medium: 100 J</td>
</tr>
</tbody>
</table>

ALLOWED PEAK Gs

| | | | | |
|-----------------------|---------------------|---------------------|---------------------|
| | 300 Gs | 250 Gs (dictated by dwell-time limits) | 300 Gs | 275 Gs |
| | 180 Gs for 100 J drops | 275 Gs for 180 J drops |

WWW.MOTORCYCLISTONLINE.COM June 2005
Scorpion have entered the market to challenge the once-reigning Japanese leaders, Shoei and Arai. These new brands offer helmets that look and feel pretty much like the Arais and Shoeis we were used to wearing and seeing on all the magazine covers, but at substantially lower prices. Problem is, a lower price, especially in a potentially life-saving piece of safety equipment, can do as much harm as good to a brand. There’s always the perception lingering in a buyer’s mind that a product can’t be as good or protect as well if it doesn’t cost as much.

So what can a lower-priced maker do to enhance its brand reputation? Get Snell certified. Whether they think a Snell helmet is actually better at head protection or not—and there’s no shortage of debate on that subject—they’re essentially over a barrel. If they don’t get Snell certified, they give the perception their products are not as good as the others on the shelf. And their helmets will sell like Girls Gone Wild videos at a Village People concert.

In six months of researching this article, I spoke to many helmet company representatives. Some in civil tones. Some not so much. One, in particular, summed up the Snell-or-not quandary best. It was Phil Davy, brand manager for the very popular Icon helmets and riding gear. “When you build a helmet for this market, meeting the Snell standard is your first, second, third, fourth and fifth concern. You can then start designing a helmet that’s safe,” he said.

It is important to note that every one of Davy’s Icon helmets is Snell certified. He’s no fool.

The Rules Rule
OK. We promised an actual helmet impact test, and it’s time to give it to you.

We asked the major helmet brands sold in the U.S. to each pick one model of their helmets. We asked for two functionally identical helmets in the same size, medium or 7 1/4. Why two? To give us a look at the consistency of the manufacturer’s production techniques. Why all one size? To make sure any differences we saw were due to design and production differences, not random differences due to sizing. And we wanted to use the same-size headform in all our testing, again for consistency.

We were also interested in learning as much as we could about different helmet constructions, and about how helmets built to different standards vary. So if a manufacturer made both fiberglass-shell and plastic-shell helmets, we asked for a pair of each. And if a manufacturer made helmets to two different standards, we asked for both as well.

Icon and Scorpion sent both fiberglass and polycarbonate helmets, all Snell/DOT-rated. AGV sent a pair of Snell/DOT-rated X-92s and a pair of BSI/DOT-rated T/Techs. And Suomy sent the same model, its Spec 1R, in both BSI-rated and ECE-rated versions.
Three of the four impacts we planned for each helmet would be on that flat asphalt surface—simply because that’s what real motorcyclists land on when they fall, more than 75 percent of the time. The Hurt Report established this, and in the recent Thailand helmet study 87.4 percent of the helmet hits were from the road surface or the shoulder. Helmets do hit curbs a small percentage of the time, but usually after sliding along on the road first, which means that in most cases they are actually hitting a flat surface—the vertical plane of the curb.

For the energy of each drop, we selected a range of hits typical of both the DOT and Snell testing regimens. We hit the left front and the left rear of the helmets with an energy of 100 joules, which translates to a drop of about 2 meters, or 6.6 feet. According to the Hurt Report, this drop represents the 90th-percentile energy of the crashes they investigated.

We also did one high-energy drop with an energy of 150 joules, the same energy—about a 10-foot drop—as the hardest hit specified in the Snell standards, on the right front of each helmet. That’s 66 percent more violent than the drop specified by the DOT standard for a medium-sized helmet, and represents the 99th-percentile impact seen in the Hurt Report. Which means 1 percent or fewer impacts seen on the street exceeded this energy level. So we weren’t exactly taking it easy.

To see what happens when you’re unlucky enough to rear-end a truck’s lift gate, slide into a storm drain or be flung into the Eiffel Tower, we also did an edge test. For the energy of each drop, the 100-joule edge hit hadn’t come close to bottoming any of the helmets—even the supposedly wimpy DOT-only ones. We are confident we could have done the edge test at the 99th-percentile 150 joules—the Snell edge-anvil test—and seen results commensurate with those we saw from the other impacts. The results of all our laborious test rig than to play nice with the helmets. If a single helmet bottoms out and squishes its EPS liner flat, the total impact goes right into the headform and test rig—as it would to your head. And just like your head, the test rig is gonna break. We weren’t sure all the helmets would survive the 150-joule edge drop, so we pulled back to the 100-joule level. Fracturing the rig would put us out of commission for days, and we didn’t have the time—or money—to risk that.

In the end we were too conservative. When we inspected the helmets after the full course of testing, the 100-joule edge hit hadn’t come close to bottoming any of the helmets—even the supposedly wimpy DOT-only ones. We are confident we could have done the edge test at the 99th-percentile 150 joules—the Snell edge-anvil test—and seen results commensurate with those we saw from the other impacts. The results of all our laborious impact testing were exactly as expected—but still surprising as hell.

The helmets ranged from the stiffest regimen, the DOT standard, to the Snell standard, the stiffest. But would the real-world, production-spec helmets actually show that progression from soft to stiff? In other words, can you predict how stiff a helmet will be simply by looking at the standard label? Absolutely.

In fact, our results show that modern helmets are all made with an amazing degree of precision, with their shell construction, liner density and liner thickness all controlled very well in the production process. In other words, almost everybody designing serious helmets seems to know exactly how to get what they want—the only variable is deciding what they want. And for the most part, the standards make that decision for them, not flash- es of genius on the parts of the helmet designers themselves. All the helmets we tested performed exactly as the standards they were designed to meet predicted. And they seemed to exceed those standards—that is, the DOT-only helmets were better at high-energy impacts than they had to be just to pass the DOT standard, and the Snell helmets were better at absorbing low-energy impacts than they had to be to pass DOT or Snell.

So choosing a helmet, at least in terms of safety, is not a question of choosing high or low quality, it’s one of choosing what degree of stiffness you prefer, finding a helmet in that range that will be adequate in the real world. Because the edge impact flexes the EPS inside—the real energy absorber in the system—start doing its work sooner.

In the high-energy impact, the 3-meter, 150-joule drop—the kind of hit a Snell helmet is, presumably designed to withstand—the differences became more apparent. The stiffest helmets in the Big Drop test, the Arai Tracker GTs, hit our hypothetical head with an average of 243 peak Gs. The softest helmets, the Z1R ZRP-1s, bonked the noggin with an average of 176 peak Gs. This is a classic comparison of a stiff, fiberglass, Snell-rated helmet, the
Ara, against a softer, polycarbonate-shell, DOT-only helmet, the Z 1R.

OK. So let’s agree that we want to subject our heads to the minimum possible G force. Should we pick an impressive, expensive fiberglass/Kevlar/unobtanium-fiber helmet—or one of those less-expensive plastic-shelled helmets?

Conventional helmet-biz wisdom says fiberglass construction is somehow better at absorbing energy than plastic—something about the energy of the crash being used up in delaminating the shell. And that a stiffer shell lets a designer use softer foam inside—which might absorb energy better. Our results showed the exact opposite—that plastic-shelled helmets actually performed better than fiberglass. In our big 3-meter hit—the high-energy kind of bash one might expect would show the supposed weaknesses of a plastic shell—the plastic helmets transferred an average of 20 fewer Gs compared with their fiberglass brothers, which were presumably designed by the same engineers to meet the same standards, and built in the same factories by the same people. Why is this? We’re guessing— but it’s a really good guess: The EPS liner inside the shell is better at absorbing energy than the shell. The polycarbonate shells flex rather than crush and delaminate, and this flexing, far from being a problem, actually lets the EPS do more of its job of energy absorption while transferring less energy to the head. Remember, these polycarbonate helmets from both Icon and Scorpion are also Snell M2000 rated. So they are tested to some very extreme energy levels. And Ed Becker, executive director of the Snell Foundation, is on record as saying that a low-priced—that is, plastic-shelled—Snell-certified helmet is just as good at protecting your head as a high-priced—that is, fiberglass—Snell-certified helmet. So at the high-end of impact energy, we have the Snell Foundation vouching for their performance. And our testing, without the extreme two-hit hemi test, says they’re actually superior.

Score One For Faceless Government Bureaucrats

The DOT helmets we had were all plastic-shelled, and none cost more than $100. How did they do? They kicked butt. In what must be considered a head-impact Cinderella story, the DOT-only helmets from Z 1R delivered less average G force to the head-form through all the impacts than any others in the test. And they still excelled in the big-hit, 150-foe impact—a blast 66 percent harder than any actual DOT test for a medium-sized helmet. The Z 1R ZRP-1s continuously amazed us. After all the testing, its outer shell looked essentially unharmed. The slight road rash at the impact sites caused by our stubborn insistence on hitting actual pavement looked no worse than we’d expect if the helmet had fallen off the seat at a rest stop.

When we pulled the ZRP-1s apart, the EPS had cracked and compressed at the impact sites, just as it’s supposed to do, and just as it did in every other helmet. But it had come nowhere near bottoming. There was still an inch or more of impact-absorbing foam left. And the plastic shell seemed completely unharmed, from the inside as well as the outside, even where it had taken the terrifying edge hit and the big three-meter bash.

This illustrates just how hard it is to tell from the outside whether a helmet has taken a severe hit. And why you should never, ever buy a used helmet.

The Hardest Hits

So the softest DOT helmets came through our tests with protection to spare. But doubt lingered, in spite of everything we had seen. How would they do in a monster, wicked-big impact?

So we decided to kill them. We ran the Z 1Rs up the test rig one last time. Not just to the 10-foot, 150-foe Snell test height, but all the way to the top of the rig—3.3 meters, or 13 feet. This hit would be at 8.5 meters per second, an energy of 185 joules. That’s higher and harder than any existing helmet standard impact. And, not coincidentally, the same height and energy called out in the DOT 22-05 specification.

We did one hit on the pavement and one on the curb anvil—the same hits called out in the COST proposal. We did them on the back of the helmets, in the center, because that was the only place we hadn’t hit them before. So this last test is not directly comparable to the others. But it showed, in no uncertain terms, just how tough—and how protective—an inexpensive helmet can be.

The peak Gs for the monster hits were 208 for the curb impact and 209 for the flat-pavement impact. Just a few Gs more, that is, than many of the Snell-rated helmets transmitted in their seven-foot hits on the flat anvil. And even after these mega hits, the EPS liners were still nowhere near used up. The ZRP-1s are also well finished, quiet and very comfortable. And our testing, without the extra $10 and treat yourself to a 21R ZRP-1.

Another helmet that taught us a thing or two was the Schuberth S-1. The Schuberth is certified to the ECE 22-05 standard, which dictates impact energies marginally higher than the DOT standard. Like the Z1R ZRP-1 and the Fulmer Air4, it has relatively large outer dimensions, leaving room in the shell for thicker, and presumably softer, EPS. And like the DOT-only lids, it soaked up energy like a sailor soaks up Schlitz. If you can’t bring yourself to wear a $79.95 helmet just to get excellent energy management, you’ll feel very comfortable with the Schuberth.

Another helmet that taught us a thing or two was the Schuberth S-1. The Schuberth is certified to the ECE 22-05 standard, which dictates impact energies marginally higher than the DOT standard. Like the Z1R ZRP-1 and the Fulmer Air4, it has relatively large outer dimensions, leaving room in the shell for thicker, and presumably softer, EPS. And like the DOT-only lids, it soaked up energy like a sailor soaks up Schlitz. If you can’t bring yourself to wear a $79.95 helmet just to get excellent energy management, you’ll feel very comfortable with the Schuberth.
which sells for $640 to $700. The other helmets we pulled apart used either a one-piece or a two-piece EPS liner. The 5-1, on the other hand, uses a complex, five-piece liner, with separate front, rear and overtop pads glued to a central foam hat. Leave it to the Germans to use five parts to do what the Z 1R does with one.

A few of the European helmets—_the Vemars, the Sharks and the Suomys—are a different kind of EPS liner than we’re used to seeing in Asian-built helmets. Instead of a solid foam liner of a specific density, these Euro-lids have a two-piece EPS liner. The S-1, apart used either a one-piece or a_ _one-piece or a five-piece liner, with separate front, rear and overtop pads glued to a central foam hat. Leave it to the Germans to use five parts to do what the Z 1R does with one._

The other helmets we pulled apart used either a one-piece or a two-piece EPS liner. The 5-1, on the other hand, uses a complex, five-piece liner, with separate front, rear and overtop pads glued to a central foam hat. Leave it to the Germans to use five parts to do what the Z 1R does with one.

A few of the European helmets—the Vemars, the Sharks and the Suomys—use a different kind of EPS liner than we’re used to seeing in Asian-built helmets. Instead of a solid foam liner of a specific density, these Euro-lids have a two-piece EPS liner. The S-1, apart used either a one-piece or a five-piece liner, with separate front, rear and overtop pads glued to a central foam hat. Leave it to the Germans to use five parts to do what the Z 1R does with one.

The ECE-rated helmet stuffed into the requisite shell of thin bone filled with 100 percent fat provides truly amazing protection. But just how good can helmets be? We investigate.

All Helmets Are Great. We Investigate.

The good news in all this is that helmets—all helmets—are getting better. The last time we did an impact test on helmets was back in ’91, in the November issue if you’re rummaging through that pile in the garage next to your 1929 Scott Flying Squirrel. We did some of the same impacts this time, a 7-foot flat drop and a 10-foot flat drop, as we [and Thom] did in ’91. So the results, at least on those tests, are highly comparable.

Back in ’91, both DOT and Snell/DOT helmets routinely exceeded 250 Gs in the 7-foot drop, and often spiked past 300 Gs in the 10-foot drop. Ouch. In our new results, no helmet exceeded 250 Gs in the 10-foot drop, and the vast majority of the 7-foot drops stayed well below 200 Gs. So falling at a 10-foot energy level today—a 99th-percentile crash—is like falling at a 7-foot energy level was back in ’91. That means more and more people are being protected better and better.

It also means that in well over 90 percent of the impacts we did, the rider would probably have come out with no more than an AIS 3—or serious—brain injury. Helmets are getting better, and some of the least-expensive helmets provide truly amazing protection. But just how good can helmets get? Stay tuned—we’ll explore that topic very soon.
Reply to Snell Rev 2 (Toned down as per Mitch)

Dexter Ford

The Snell Memorial Foundation is not pleased with our helmet-testing story, “Blowing The Lid Off”, in the June ’05 issue. If you want to review the story itself, it’s on our website, www.motorcyclistonline.com.

They have posted a response on their website (www.smf.org). We encourage you to read it.

Frankly, we expected more from a foundation that many of us, for many years, have trusted with our money, our lives, our health and the welfare of our families.

Our intention in doing the tests and writing the original story was not to attack the Snell Foundation, the Snell M2000/2005 Standard, or any helmet brand. And a fair reading of the story would show that we didn’t. We simply devised our own tests, designed to represent the vast majority of actual crashes we and our readers actually have, based on the best scientific information we could get. We tested the helmets, fairly and objectively, and let the chips fall where they fell. And the overwhelmingly positive response we got from you, our readers, showed that you appreciated the effort.

The scientists we quoted, Dr. Jim Newman, Professor Harry Hurt and Dave Thom, were sometimes frank in their criticism of the Snell Foundation. Where were the scientists who are in favor of the Snell Standard? Why didn’t we quote them? The answer is really simple. In all our research, in the U.S., England and Europe, over most of a year, we couldn’t find one.

On The Edge

If the Snell Foundation wanted to criticize our methodology and our story, we would have hoped that they would have portrayed the story accurately. This quote from their response showcases their selective reading: “They (Motorcyclist) based their comparison on flat impact performance…”

They ignored the 32 individual tests we made, not on a flat surface, but on an edge anvil, a nasty-looking piece of upright stainless steel bar Snell uses in its own standards testing. We calculated these edge-anvil tests into the
average peak g graphs, just like the flat-pavement tests. We wrote about these edge-anvil tests repeatedly in the story. They are clearly delineated in the key to the comparison graph. There’s a picture of one of these edge-anvil tests on the second spread—complete with a caption. Snell purposely ignored the edge-anvil tests—and then attacked our testing because it was all done on flat surfaces. Which it wasn’t.

Major Impact

Snell also reasserts their scientifically unsupportable position that taking violent impacts to the head is “non-injurious”, so long as you take less than their 300g limit. Well, the list of scientific papers, accident studies and eminent head-injury scientists the world over who disagree with Snell on this is overwhelming.

Dr. Jim Newman, a highly respected head-injury scientist and a former Director of the Snell Memorial Foundation, has stated that a 200g impact to the head can be fatal, that a 200-250g impact corresponds to an AIS 4, or severe, head injury, that 250g-300g relates to an AIS 5, or critical head injury, and that a blow over 300g corresponds to AIS 6. AIS 6 means dead.

Military Standards

Even our military disagrees with Snell on this. The U.S. Army Aeromedical Research Laboratory (USAARL) has created a g-tolerance standard for helicopter crewpersons’ helmets. For a two-meter drop height, the same drop height we used in 3/4 of our testing, the Army allows no more than 150 gs to the earcup areas of the head, which they have determined are especially vulnerable, and no more than 175 gs on other areas. Should we motorcyclists—who are often older, not as fit, and not quite so willing to die or sustain head injuries as eager young soldiers—accept g tolerance levels of 300g for the same hits?

Round Table Discussion

In their response, Snell picks a paragraph from the European COST 327 Final Report—the most recent major motorcycle-accident and head-injury study. The paragraph says that helmeted riders struck a “round object” 79%
of the time. And Snell is using it to justify their controversial two-hit hemispherical anvil testing, the tests that make Snell-rated helmets stiffer than any others.

The “round object” figure directly contradicts the findings of at least 6 reputable motorcycle accident studies, done all over the world over the last 30 years, that have shown that between 75% and 87% of helmet impacts happen on the flat road surface. Which makes sense. Because a huge majority of the time, the road is what you’re riding on when you fall. And when you fall, you fall down. It’s that darned gravity thing.

Some scientists we’ve talked to, who are just as mystified as we are with this particular COST 327 finding, have suggested that this data came from examining helmets in the lab after crashes, and finding round marks on the helmets. But when you hit a flexible, essentially round helmet on a flat surface, you get a round mark on the helmet—which may have been misinterpreted by the lab staff as the impact of a “round object”.

Or they may have been referring to the surface of the earth as a “round object”. Which, in a large sense, it is. We’re just amazed that the Snell people would know this.

If the COST 327 people really thought 79% of victims hit their helmets on “round objects”, one would think they would have put a “round object” hemi anvil into their proposed helmet standard. They did not. The COST people propose to hit helmets on a flat anvil and a curb anvil—no hemi anvils at all.

Here’s what Dr. Bryan Chinn, the Editor-In-Chief of the COST 327 Final Report, says about the hemispherical anvils Snell dictates: “From our research, the (hemispherical anvil test) is a particularly severe test and can result in a very stiff liner that possibly detracts from performance in other types of impact, particularly on the flat.”

Calculating the COST

It’s probably a bad idea, in the long run, for Snell to support their position with a couple out-of-context graphs and snippets from the 327-page COST Final Report. Because there is no shortage of places in which the COST study directly contradicts the Snell “300gs is OK” position.
Such as this quote: “Peak linear acceleration (to the head) should be less than 250g.” (COST 327 Introduction, page v)

Or this one: “Current (helmet) designs are too stiff and too resilient, and energy is absorbed efficiently only at values of HIC (Head Injury Criterion, a measure of g force over time) well above those which are survivable.” (COST 327 Introduction, page x).

Or figure 7.28, page 166. This graph shows how the actual observed head-injury level of accident victims rises with the peak linear gs the victims received in their crash. At 250g, accident victims had an 80% chance of an AIS 3, or serious, head injury. At 300gs, the probability of an AIS 3 injury went up to 93%. As anybody who can read a graph can see, getting hit less hard is, well, less bad.

COST Figure 7.28 graph

Or the final proposed COST 327 helmet standard itself. This contradicts just about everything Snell espouses. It actually requires higher-energy hits than any single Snell-M2000/2005 impact, and dictates lower allowable peak gs for those impacts—275g vs. Snell’s 300g. It has no Snell-type hemi-anvil hits. It has no Snell-type double hits. It uses a two-tiered impact-test regimen, with lower, 180-g limits for lower-energy impacts, the ones that
actually happen a huge majority of the time. And unlike Snell 2000/2005, it graduates the headform masses according to head size, to keep people with lighter heads—small-headed men, women and children—from taking harder hits in a crash.

Also unlike the Snell Standard, the COST Standard includes a chin-bar test that limits peak gs. This is important, because a blow straight to the face is a relatively common accident—and one that often results in a fatality, from a basilar skull fracture.

We think the COST 327 standard, which is proposed to replace the current UN/ECE 22.05 regimen, is the smartest off-the-rack standard we’ve seen—the best reflection of current knowledge about human tolerance and the helmet making-and-testing state of the art.

Malcontents

The Snell Foundation has also been less than kind to some renowned head-injury scientists for trying to find, and give our readers, the truth.

In one e-mail, to a member of the Norton Owners List, Snell’s Executive Director called our article “an attack”, perpetrated by “malcontents”.

Here are a few of the people who helped with our research, or who have expressed their agreement with our testing methods and our conclusions—it’s pretty much a who’s who of eminent head-injury scientists around the world:

Dr. Bryan Chinn, Editor in Chief, UN/ECE COST 327 Final Report.

Dr. Jim Newman, former Snell Foundation director, and highly respected head-injury scientist. Dr. Newman is an actual rocket scientist, has been inducted into the International Health and Safety Hall of Fame, and holds several helmet patents.

Dr. Terry Smith, of Dynamic Research Incorporated, another internationally respected motorcycle- and automobile-accident researcher and head-protection scientist.
Andrew Mellor, of the FIA Institute, a renowned helmet-design scientist and originator of the FIA Super Helmet specification for Formula 1 drivers.

Dave Thom, of Collision and Injury Dynamics, an enthusiastic rider and eminent motorcycle-accident researcher and scientist. He’s worked with us for many years trying to prevent accidents, improve helmets and save lives.

And Professor Emeritus Harry Hurt, of the Head Protection Research Laboratory. Professor Hurt ran the HPRL head-injury lab at the University of Southern California for many years. And the Hurt Report he helmed is still one of the most important, most credible studies of motorcycle accidents the world has ever seen.

Malcontents, indeed.

Dialogue. Not Diatribe.

We’d be happy to engage in any productive exchange of ideas with the Snell Foundation, helmet companies, scientists, or anybody else who’s dedicated, not just to maintaining the status quo in helmet standards and helmet design, but to making helmets safer and more protective. The bottom line here is in preventing injuries and saving lives. If anybody sincerely wants to help us in this quest, they know where to find us.